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Abstract

Kinetic parameter equations were derived for estimating a general nth-order decomposi-
tion reaction from a single DTA curve. These categories, for n <1, n =1, and n # 1, were
derived. Three kinetic parameters, the activation energy F, reaction order »n, and pre-expo-
nential factor 4, can be expressed as functions of the characteristic temperatures T, Tjy, T,
and T, which are the decomposition starting point, first inflection point, peak maximum
point and end point on the DTA curve, respectively. All of the kinetic parameter calculations
are straightforward without any iteration.
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t time
x fraction of material reacted

Greek letters

factor in Eq. (7)
proportionality constant
difference

constant heating rate

o > ™ R

1. Introduction

The use of differential thermal analysis (DTA) to evaluate kinetic parameters has
been widely studied by many investigators. Kissinger [1] proposed a semi-empirical
formula to calculate the reaction order and to evaluate the activation energy using
the values of various heating rates and maximum temperature of DTA curves. This
semi-empirical equation can be applied for n < 1 only. Huang and co-workers [2,3]
also applied the Kissinger formula and another modified Kissinger formula to
estimate reaction order for » < 1 and » > 1 in the three categories, n < 1, n = 1, and
n>1, and applied their simplified equations to calculate activation energy E and
pre-exponential factor 4. Yang and Steinberg [4,5] used the peak temperature 7', of
the first derivative and two inflection temperatures T;, and T, of the second
derivative of the DTA curve to solve reaction order as n 5 1. The calculated results
arc unreasonable for the values of T}, and T, since they represent two different roots
solved from the same equation. They are not totally independent. Liu et al. [6]
modified the Yang and Steinberg model and used T,,,, T}, and the starting and ending
temperatures T, and T, to obtain a fairly convenient model. However, all of these
methods of Huang et al., Yang and Steinberg, and Liu et al. are still very complicated
and have to be solved by a trial and error approach to obtain the values of £ and A.

In this investigation, a very brief and accurate relationship will be derived from
a single DTA curve to evaluate the decomposition kinetic parameters, n, E, and A4,
in three categories, n <1, n =1, and n # 1. These methods represent a more
convenient method for the rapid calculation of the kinetic parameters from a single
DTA curve than any of the previous methods. A detail discussion of this method
is presented here.

2. Theoretical

In general, the expression of solid decomposition reactions of nth order can be
described as
dx

E = A(l _x)ne—E/RT (1)
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where dx/dt is the rate, x is the fraction of the material reacted, 4 is the
pre-exponential factor of the Arrhenius equation, » is the reaction order, E is the
activation energy, R is the gas constant and T is the absolute temperature. On a
DTA curve, the temperature deviation from a set horizontal baseline can be
assumed to be proportional to the reaction rate of material decomposition

d
AT=ﬁ§§ (2)

where f is a proportional constant. If 7, is the starting temperature and ¢ is the
constant heating rate, we can express the temperature of reaction as

T =Ty+ ¢t (3)
Combining Eqgs. (1) and (3), and then integrating
* dx =4 J‘r C—E/R(To+¢t) dt (4)
b (1—x)" 0

Integration of the right hand side of Eq. (4) can be approximated as

e~ EIRTyo+ 00 — o—(E/RTO)IIAL +¢1/To))
— e —(EIRTIL = (¢1/To) +($1/Tp)? = - ]
~ e (EIRTI — (1] Ty)] (5)

Substituting Eq. (5) and Eq. (4) and integrating, gives

[1/(n = DL —x)"="] — 1] = (ART3/$E)e = HIRT[e@HRTO 1] (6)
Let
OE Amn—1)
2.4 Zm and B :W

and Eq. (6) can be expressed as
(1 —x) = [B(e" — 1) +1]"0 (7

Combining Eqgs. (1), (2), (3), and (7), the temperature deviation can be expressed
as

AT = BAe~"RTog*[Be 1 (1 — B)]"( —" (8)

At T =T, and t = ¢, the deflection of the DTA curve is maximal and dAT/dr = 0;

thus
dAT nBae*
— =gAT A
a T O T Be 1 (1 B)]

From Eq. (9), we can obtain the relationship

T=0 9

—I_Be”m=(n—1) (10)
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Fig. 1. Relationships of n and (T, — T,,)/(T,, — T;;) for n <1 from eqn (16).

There are two points of inflection on the DTA curve: at T;; and T;; at time ¢, and
t,. These two points can be found by setting the second derivative of the
temperature deviation equal to zero, i.e. d?AT/ds? = 0. Then we can obtain the next
two equations

B e (= D2+ -/ + )]
2

1—-B

(11)

and

,,,.2_('1—1)[2-#” + ./ n(n + 4)]
1—B° 3 (12)

At the final decomposition time ¢, and temperature 7, the temperature deviation
AT from the baseline is set to zero. Therefore, from Eq. (8) we can obtain the
equation at the end point as

B
ate . 1
— & e 1 (13)
Dividing Eq. (13) by Eq. (10) yields
ettty — | (14)

1—n
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Fig. 2. Relationships of n and (AT,)/(AT,,) for n #1 from eqn (20).

Then, dividing Eq. (10) by Eq. (11) yields

2
ea(tm*til) e — (15)

2+4n—./nn+4)
Taking the natural logarithm on both sides of Eqgs. (14) and (15) and dividing the
first term by the second term and then combining with Eqs. (3) gives

I.—T, In(1 —n)

To—Ty  In[[2+n —/n(n +4)/2]]

Eq. (16) is the same as that derived by Liu et al. [6]. From this equation, we see that
the values of n must be less than unity. The value of the reaction order is a function
of the measurable characteristic temperatures 7., T,,, and T;,. However, this equation
is not convenient for estimating the value of n which has to be solved by a trial and
error approach. In order to obtain a convenient equation for the reaction order
calculation, the values of n versus (7. — T,,) (T, — T;,) are plotted in Fig. 1. Then,
using curve fitting, we can express n as a function of the characteristic temperatures

n=0.99811 — 1,25873¢093573(Te — Tm)/(Tm ~ Tiv) 1n

Eq. (17) is only used in the range of n <1, or 0.1 <(7,—T,,) (T, — T;;) < 11.96.
Using this equation, we can estimate the reaction order of decomposition very

(16)
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conveniently and quickly. After obtaining the value of n, the values of £ and 4 can
be evaluated. From Egs. (3) and (14), we obtain

RT?
E—T Tln(l—n) (18)

From Eqgs. (3) and (10), the value of the pre-exponential factor of the Arrhenius
equation can be expressed as
(E¢[RTG)e " o

A = JaT, - TRt +(n—1)

(19)

Egs. (16)—(18) are valid for » <1 only. When this does not hold, these equations
are useless. Liu et al. suggested combining Eqgs. (8), (10) and (11) to give

AT _ [2 +n—nn + 4)][(n —D[2+4n—nn+ )] + 2}"/“ - 20)

AT, 2 2n

Eq. (20) is more complicated than Eq. (16). Using this equation to evaluate the
values of 7 is arduous. In order to solve this problem, we plot the calculated values
of n versus AT, /AT, from Eq. (20) as shown in Fig. 2. Again, after using the
method of curve fitting, the reaction order n can be expressed as a function of the
characteristic temperatures in a very simply way

n =352204.38¢ 81264 /AT (21)

Eq. (21) is valid in the range of n # 1 or 0.58 < (AT;;/AT,,) <0.837. The values of
AT, and AT,, are the distances of 7;; and T, from the basecline to the curve
respectively. The value of E in this category can be calculated by rearrangement of
Eq. (15)

E=RT3/(T,— T;)) In[[2+n + /n(n + 4)]/2] (22)

The values of the pre-exponential factor 4 in this category can be calculated using
Eq. (19).

If the relationship between the characteristic temperatures, (7. — T,/ (T, — T;),
is greater than 11.96, the reaction order is equal to unity. Eq. (1) becomes

dx
— = A(l —x)e FRT 23
4 = A1 —ne (23)
The first derivative of Eq. (23) can be used to find 7 =T, at time ¢t =1,
d [dx OF dx
il Bunddl B _ Ae—EIRT = 24
d <dt> |:RT2 ¢ :|Trm a0 (24)
Thus, we can obtain for n =1
OF
A= E[RT, 25
RTZ. e (25)

The second derivative of Eq. (23) can be used to obtain two inflection temperatures
T; and T, at time ¢, and ¢;, respectively. The result is
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Fig. 3. Relationships of E/RT;, and (T} }/(T,,) for n =1 from eqn (29).

d? [dx G E* 2P°E\ 39E - dx
il skl N _ _ —E/RT ~-EfRTy2 |2
dt2<dt> [<R2T4 RTe ) g Ae AT G =0 (26)

The solution of Eq. (26) can be obtained as two roots

[ RT,

_ [s5og i

 E 3 +8
Ae EIRT =

RT? > (27)
and
/ RT,
3— /5482
Ae~EIRT2 = 9E N E (28)
RTS 2

Combining Eqs. (25) and (27) to eliminate A4, we can calculate the activation energy
from the following equation for n =1

T.T, R T, 2RT;
E=-"""1"12m-"_1In[ 15— /1254 29
Tm—ﬂl[ " il n< 5 5+ E ):| ( )

For high activation energy materials, E » 2RT,,, the last term inside the square
root can be neglected. Consequently, this equation can be simplified as
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~_Lm T T
Ex T —T, [1.9123 +3.9741In Tnjl (30)
for n = 1. When the activation energy is not very high, Eq. (29) should produce
some truncation error if we neglect the last term inside the square root. In order to
obtain an exact value of E from Eq. (29), we have to solve it by a tedious trial and
error method. Therefore, the relationships between E/RT;, and T;,/T,, were calcu-
lated from Eq. (29) and plotted in Fig. 3. After curve fitting, their correlation can
be expressed as

E[RT;, = 13.54925 + 3.58857 x 10~ 194705882731/ Tew) (31
for n = 1. Eq. (31) can also be expressed as
E = T;,[26.92236 + 7.1305 x 107947058827 /Tm) (32)

for n = 1. From Eq. (32), the first-order reaction activation energy can be calcu-
lated very easily. This equation is only valid in the range 0.90 < (7},/T,,) < 0.98.

3. Verification and application of the theorem

Yang and Steinberg [ 5] expressed the reaction order # as a function of T,, T, and
T, for n <1 and as a function of T;,, T}, and T,, for n # 1. The calculation cannot
always provide a convergent solution for n # 1 due to the variables 7;, and T},
which are solved using the same equation. Liu et al. [6] modified the Yang and
Steinberg model and obtained a fairly convenient one. However, it is difficult to
obtain a solution of the reaction order n from their complicated equations.
Kissinger [1] proposed a shape index semi-empirical equation to calculate reaction
order for n < 1. This equation is convenient for the estimation of reaction order.
However, using Kissinger’s model to estimate the activation energy requires various
heating rates. Huang and co-workers [2,3] also used Kissinger’s model to estimate
the reaction order for » <1 and modified the Kissinger model tc calculate the
reaction order for 1 <n < 2. There is no way to calculate reaction order for n > 2.
Therefore, the above methods to calculate the kinetic parameters are still compli-
cated and inconvenient. Even Huang and co-workers used the Kissinger model to
estimate reaction order to avoid complicated iteration; the activation energy and
pre-exponential factor calculations in their model still need to be solved by trial and
error iterations. Comparing all of these models, the equations presented here are
more effective and convenient than any of the other equations in the kinetic
parameter calculations.

A brief, convenient theorem has been derived above in the three categories, n < 1,
n =1, and n # 1, for calculating the kinetic parameters of a decomposition reaction
from a single DTA curve. Knowing the characteristic temperatures of a DTA curve,
the kinetic parameters n, E, and 4 can be evaluated very quickly and accurately
from the above derived equations. In order to demonstrate this derived theorem,
DTA thermograms for the decomposition of energetic and other materials pub-
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Table 1

Comparison of kinetic parameters obtained by various methods (n = 1)

Yang and Steinberg [5] ¢/(°C min~") E/(kcal mol~") Afs™!

Decomposition of benzenediazonium chloride, T, = 53.93°C, T;, =46.45°C

Crossley et al. [7] 0 272 1.0 x 10132

Borchardt and Daniel [8] 1 28.3 1.0 x 10163

Huang et al. [2] 1 26.1 1.0 x 1047

This work 1 29.8 (Exact) 1.0 x 10!72

1 27.1 (Approx.) 1.0 x 10!54

Decomposition of CO, + C—2CO, T,,=1293°C, T;; =1221°C

Value in literature [1] 10 71.16 3.32 x 107

Yang and Steinberg [5] 10 72.00 (Approx.) 3.25 x 107
10 66.00 (Exact) 411 x 108

This work 10 73.71 (Exact) 4.88 x 107
10 68.23 (Approx.) 7.76 x 10°

Dehydration of Goergia kaolinite, T, =600°C, 7T}, = 555°C

Value in literature [1] 6 34.97 1.29 x 10°¢

Yang and Steinberg [5] 6 35.00 1.23 x 10°®

This work 6 36.59 (Exact) 3.49 x 108
6 34.11 (Approx.) 7.78 x 10°

Dehydration of Eureka halloysite, 7., = 533°C, T;, =496°C

Value in literature [1] 6 35.85 1.66 x 107
Yang and Steinberg [5] 6 36.00 2.05 x 107
This work 6 37.94 (Exact) 5.68 x 107

6 35.18 (Approx.) 9.41 x 10°

lished by previous authors have been employed to calculate kinetic parameters. The
calculated results are compared with literature data.

3.1. Case of n=1

The kinetics of the first-order reactions can be solved analytically provided £ and
A are functions of T;, and T,, only. These final relationships have been shown in
Egs. (32) and (25) respectively. In Egs. (29), we see that the values of E have to be
greater than 2RT;,, otherwise there is no solution in this equation. If E>» 2RT,,
then Eq. (29) can be simplified into Eq. (30). In that case, the activation energy is
very high. The DTA curve must be very narrow and sharp, or T}, is close to T,,.

Four first-order decomposition reactions were selected from the literature as
shown in Table 1. The estimated E and A4 values are compared with those
previously determined. The kinetics of decomposition of benzenediazonium chloride
solution were studied isothermally by Crossley et al. [7] and the non-isothermal
DTA curve was measured by Borchardt and Daniels [8]. The approximate solution
of the activation energy E is very close to the experimental data of Crossley et al.,
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ie. E =272 kcal mol™'. The exact solution gives slightly higher values and the
method of Huang et al. gives slightly lower values of E and A.

Other first-order reactions are the decomposition of CO, + C, the dehydration of
Georgia kaolinite, and the dehydration of Euraka halloysite. All of these kinetic
parameters are obtained from Yang and Steinberg [4,5] and Kissinger [1]. The
calculated E and A4 values for both the exact and approximate solutions are better
than Yang and Steinberg’s calculations and close to the experimental results. Yang
and Steinberg used the calculated values of E and A4 to predict the rates of CO, + C
reaction. Their predicted values are lower than the experimental data determined
isothermally. This is because the temperatures measured (T}, and 7,) were the
reference temperatures, and during the reaction the sample temperature was lower
than the reference and the heating rate was also lower before the peak temperature.
Consequently, lower 7;, and T,, values lead to lower estimated E and A. In this
calculation, all the values of activation energy and pre-exponential factor are higher
than the Yang and Steinberg predictions. The approximate solutions yield a lower
value than the exact solutions and the Yang and Steinberg predictions neglect the
last term inside the square root of Eq. (29). However, the approximate calculation
of the present method is better than any of the other evaluations.

3.2. Case of n # 1

There are two categories for v # 1, i.e. n <1 and » > 1. The kinetic parameters
n, E, and 4 can be calculated using Eqgs. (17), (18), and (19) in the category of
n<lor01<(T.—T)/(T,—T,) <1196, and Egs. (21), (22) and (19) in the
category of n # 1 or 0.58 < (AT}, /AT,,) <0.837. Various kinetic parameter calcula-
tion methods have been reviewed and listed by Huang and co-workers [2,3]. The
reaction order and activation energy calculated by this method is in fair agreement
with those obtained from experiments or from other methods. Yang and Steinberg
[5] studied the rates of decomposition of calcitic limestone by isothermal TG and
non-isothermal DTA measurement. They reported that the values of reaction order
n are between 0.55 and 0.57, and that the activation energy E is about 44 kcal
mol~'. The Huang calculated values of # are in the range 0.56-0.59, and the values
of E are about 43.6—45 kcal mol~!. In this calculation, we found that the values of
n are between 0.51 and 0.60 for various heating rates. These results are very close
to the previously calculated results of Yang and Steinberg and Huang and co-work-
ers. However, the calculated values of the activation energy are in the range
27.4-35.3 kcal mol~!. This result is lower than those of previous methods.

The kinetic parameters of energetic materials, i.e. TNT (trinitrotoluene), RDX
(cyclotrimethylenetrinitrame), HMX (cyclotetramethylene tetranitramine), Tetryl,
and PETN (pentaerythritol tetranitrate), were calculated and compared with the
results of previous studies. All the experimental data are from Huang and Wu [3].
As shown in Table 2, all of these reactions are in the category of n < 1. Both
Kissinger and Huang and co-workers calculated the reaction order using the same
semi-empirical equation. Therefore, their calculated results are the same. In this
calculation, the values of n, E, and A of RDX are in fair agreement with the
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Table 2
Comparison of kinetic parameters obtained by various methods for n # 1
¢/(°C min~") n E/(kcal mol~") A
Calcitic limestone
Isothermal TG [2] 0 0.55 44.0 1.6 x 10°
Yang and Steinberg [5}] 6 0.55 44.0 1.9 x 10®
10 0.57 43.0 1.2 x 108
15 0.56 44.0 1.9 x 10®
Liu et al. [6] 0.57
Huang et al. [2] 6 0.56 45.0 2.8 x 10°
10 0.58 444 2.2 x 108
15 0.59 43.6 1.5 x 108
This work 6 0.58 353 2.3 x 10*
10 0.51 274 5.8 x 10?
15 0.60 33.7 1.3 x 10*
RDX
Reich [9] 6 0.80 80.0
Values in literature [3] 6 0.60 42.0
10 1.0 43.1-479
15 452
47.5
0 67.5
Kissinger’s method [1] 34.68 8.3 x 10'2
Liu et al. [6] 0.6 325 4.1 x 10"
Huang and Wu [3] 6 0.85 449 2.0 x 10"7
10 0.93 448 1.8 x 107
15 0.96 46.8 8.9 x 10'7
This work 6 0.896 48.7 9.4 x 10'®
10 0.890 332 14. x 10'?
15 0.993 61.7 1.8 x 10%*
HMX
Values in literature [3) 6 1.0 52.7
10 0.86 54.0
15 177.0
228.0 +24
1.0 52.7 (liq.)
1.0 52.9 (vap.)
Kissinger’s method [1] 82.0
Liu et al. [6] 0.86 54.0 1.2 x 10"
Huang and Wu [3] 6 0.67 51.7 1.8 x 10
10 0.82 50.0 4.2 x 10"
15 0.95 57.8 5.9 x 10%°
This work 6 0.880 98.12 5.8 x 103
10 0.968 98.23 5.5 x 10%¢
15 0.998 111.16 5.7 x 104
Tetryl
Values in literature [3] 6 1.0 349
10 0.0 54.9
15 1.0 38.4

Kissinger’s method [1] 25.0
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Table 2 (continued)

¢/(°C min~1) n E/(kcal mol~!) A
Liu et al. [6] 0.92 80.4 2.5 x 10™
Huang and Wu [3] 6 0.73 32.7 7.9 x 102
10 0.79 33.6 1.7 x 103
5 0.81 312 1.2 x 102
This work 6 0.93 64.3 5.1 x 1077
10 0.91 46.9 23 x 10"
15 0.98 69.8 3.9 x 10%
PETN
Values in literature [3] 6 1.0 33.0
10 1.0 47.0
1.0 47.0
Reich [9] 6 1.0+0.1 59.0+3 3.6 x 10'2
Kissinger’s method [1] 33.0 2.5 x 10'3
Liu et al. [6] 0.89 31.3 1.8 x 1012
Huang and Wu [3] 6 1.1 47.0 7.0 x 10"
10 1.24 46.6 3.1x 10"
15 1.29 473 4.5 % 10'°
Huang et al. [2} 6 0.95 38.3 3.1 x 10®
This work 6 0.95 36.4 6.3 x 10"
10 0.97 35.1 1.3 x 10"
15 0.96 377 1.7 x 10'3
TNT
Values in literature [3] 6 1.0 24.2
10 14.0
15 0 29.4
Kissinger’s method [1] 19.3
Huang and Wu [3] 6 1.65 22.0 7.1 x 10°
10 1.75 21.0 2.9 x 10°
15 2.66
This work 6 0.998 251.1 4.1 x 103
10 0.997 193.7 1.8 x 107
15 0.998 126.4 3.7 x 104

literature data and calculations. These calculations of HMX give a better agreement
of n to the experimental data than any other calculated results. However, the
activation energies in these calculations are higher than previous data and the
Huang method as the heating rates are 6 and 10°C min~!. When the heating is
increased to 15°C min~' the calculated activation energy becomes lower than the
experimental data but better than values from the Huang method. The values for n
of Tetryl in the literature are unity for heating rates of 6 and 15°C min~' and zero
for heating rates of 10°C min~'. The calculated results of n (0.88—0.98) are better
than the Huang result of # from 0.73 to 0.81. The activation energy calculated from
Huang et al.’s method is lower than the literature data, but the present calculation

results are almost twice the reported values, except at a heating rate of 10°C min~".
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All of the #n values of PETN shown in Refs. [3] and [9] are equal to unity. Huang
used the modified Kissinger model to calculate the reaction order from their own
DTA thermograms. All of their estimated # values are higher than unity. In our
analysis, we found that the values of the characteristic temperatures are in the range
of 0.1 < (T, — T,)/(T, — T;1) < 11.96. Thus, from Eq. (17), the calculated values of
n are less than unity. The activation of this calculation is 36.4 kcal mol~! which is
close to the literature value of 33.0 kcal mol~! than obtained by the Kissinger or
Huang methods at a heating rate of 6°C min~'. However, a larger discrepancy with
previously reported results at higher heating rates of 10 and 15°C min~' was found.
There are two reasons for these calculated results. One is the higher reaction order
in previous predictions leading to the higher activation energy and pre-exponential
factor evaluations. The other is that Eqgs. (18) and (19) are functions of Ty, T.,, T,
and n. A slight change in T, can produce a very large difference in the calculated
results of £ and 4. In the Huang method, the characteristic temperatures 7,,, T,
T. and heating rate ¢ are needed to evaluate their kinetic parameters. In the present
calculation, we need one more variable, i.e. T,, which is the intersection of the
horizontal baseline and the DTA curve measured from the experimental DTA
curves of Huang and Wu [3]. Unfortunately, a tiny observation error could cause
a considerable calculated difference in F and 4 from Egs. (19) and (20). The same
results are also found for the TNT kinetic parameter calculations. The DTA curves
shown in Huang et al. are too sharp to estimate the value of 7, very accurately.
Therefore, the deviation of the calculated results from the reported data would be
significant. Again, although Huang and Wu also obtained a reaction order of TNT
greater than unity, we still use Eq. (17), i.e. n <1, to evaluate the reaction order
because the values of (T, — T.,,))/(T,, — T;,) are less than 11.96. All of the calculated
n values are close to unity. Obviously, the Huang and Wu method cannot estimate
the kinetic parameters of TNT for » higher than 2.

In the case of n > |, general equations of Egs. (21), (22), and (19) are used to
evaluate the kinetic parameters, », E, and A, respectively. These equations can also
be used in the category of n < 1. The valid conditions of calculation of these
equations are 0.58 < AT}, /AT, < 0.837. The calculated values of reaction order are
0.1 <n < 10. So far, there is no relevant experimental data in the literature than can
be used for the kinetic parameter calculations in this category. Even though Huang
and Wu obtained values of reaction order greater than unity for PETN and TNT,
the characteristic temperatures do not fall in the range 0.58 < (AT}, /AT,,) < 0.837.
Thus we cannot calculate #» and E using Egs. (21) and (22). The calculated values
of n for PETN and TNT in this work are less than unity.

4. Conclusions

The characteristic temperature equations can be employed to evaluate the kinetic
parameters, n, E, and A4, from a single DTA curve. For n < 1, Egs. (17), (18), and
(19) can be used to calculate n, E, and 4. For n = 1, Egs. (32) and (25) can be used
to calculate E and A. For n # 1, Egs. (21), (22) and (19) are employed to calculate
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n, E, and 4. All of these equations are concise and can be used to calculate the
kinetic parameters very quickly without any iteration. All of the kinetic parameters
for decomposition reactions evaluated by the present method are in fair agreement
with those in the literature, except for PETN and TNT.
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