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Abstract 

Kinetic parameter equations were derived for estimating a general nth-order decomposi- 
tion reaction from a single DTA curve. These categories, for n < 1, n = 1, and n ¢ 1, were 
derived. Three kinetic parameters, the activation energy E, reaction order n, and pre-expo- 
nential factor A, can be expressed as functions of the characteristic temperatures To, Tit , Tin, 
and Te which are the decomposition starting point, first inflection point, peak maximum 
point and end point on the DTA curve, respectively. All of the kinetic parameter calculations 
are straightforward without any iteration. 
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List of symbols 

A 
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T~j, 
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pre-exponent ia l  fac tor  of  the Ar rhen ius  equa t ion  
fac tor  in Eq. (7) 
ac t iva t ion  energy 
reac t ion  order  
gas cons tan t  
abso lu te  t empera tu re  
inflection t empera tu re  
end decompos i t i on  t empera tu re  o f  D T A  curve 
peak  t empera tu re  o f  D T A  curve 
s tar t ing decompos i t ion  t empera tu re  o f  D T A  curve 
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t time 
x fraction of material reacted 

G r e e k  le t ters  

factor in Eq. (7) 
/~ proportionality constant 
A difference 
~b constant heating rate 

1. Introduction 

The use of  differential thermal analysis (DTA)  to evaluate kinetic parameters has 
been widely studied by many investigators. Kissinger [ 1] proposed a semi-empirical 
formula to calculate the reaction order and to evaluate the activation energy using 
the values of  various heating rates and maximum temperature of  DTA curves. This 
semi-empirical equation can be applied for n < 1 only. Huang and co-workers [2,3] 
also applied the Kissinger formula and another modified Kissinger formula to 
estimate reaction order for n < 1 and n > 1 in the three categories, n < 1, n = 1, and 
n > 1, and applied their simplified equations to calculate activation energy E and 
pre-exponential factor A. Yang and Steinberg [4,5] used the peak temperature Tm of 
the first derivative and two inflection temperatures Til and T~2 of the second 
derivative of  the DTA curve to solve reaction order as n :~ 1. The calculated results 
are unreasonable for the values of  T~I and Ti2 since they represent two different roots 
solved from the same equation. They are not totally independent. Liu et al. [6] 
modified the Yang and Steinberg model and used Tin, Til and the starting and ending 
temperatures T o and T e to obtain a fairly convenient model. However, all of these 
methods of Huang et al., Yang and Steinberg, and Liu et al. are still very complicated 
and have to be solved by a trial and error approach to obtain the values of  E and A. 

In this investigation, a very brief and accurate relationship will be derived from 
a single DTA curve to evaluate the decomposition kinetic parameters, n, E, and A, 
in three categories, n < 1, n = 1, and n :P 1. These methods represent a more 
convenient method for the rapid calculation of the kinetic parameters from a single 
DTA curve than any of the previous methods. A detail discussion of this method 
is presented here. 

2. Theoretical 

In general, the expression of solid decomposition reactions of  nth order can be 
described as 

dx 
= A ( 1  - x )ne  - E m r  (1) 
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where dx/dt  is the rate, x is the fraction o f  the material reacted, A is the 
pre-exponential  factor  o f  the Arrhenius equation, n is the reaction order, E is the 
activation energy, R is the gas constant  and T is the absolute temperature.  On a 
D T A  curve, the temperature deviation f rom a set horizontal  baseline can be 
assumed to be propor t ional  to the reaction rate o f  material decomposi t ion 

dx 
AT =/~ d~ (2) 

where /~ is a propor t ional  constant.  I f  T O is the starting temperature and ~b is the 
constant  heating rate, we can express the temperature o f  reaction as 

7" = To + q~t (3) 

Combining  Eqs. (1) and (3), and then integrating 

X dX - -A f(e-E/R(T°+4't) dt (4) 
(1  - x ) "  

Integrat ion o f  the right hand  side o f  Eq. (4) can be approximated as 

e - E / R ( T o  +Ot) z e (E/RT°)[1/(I +e~t/T°)] 

= e- - (E/RTo)[  1 -- (c~t/To) + (Ot/To)2 . . . .  ] 

,~ e (E/RT°)[I ('ht/T°)] (5) 

Substituting Eq. (5) and Eq. (4) and integrating, gives 

[1/(n -- 1)][ 1/[(1 - -x )  n-  ~] -- 1] = (ART~/OE)e-E/RT°[e(CSE/RT~°)t-- 1] (6) 

Let 

bE A(n - 1) 
- and B - RT~ oteE! t¢T° 

and Eq. (6) can be expressed as 

( 1 - - x ) = [ B ( e  ~ r - l ) + l ]  '/¢' n) (7) 

Combining  Eqs. (1), (2), (3), and (7), the temperature deviation can be expressed 
as 

A T = flA e- E/RT°e~t[Be~t + ( 1 -- B)] "/~' - ") (8) 

At T = Tm and t = tm, the deflection o f  the D T A  curve is maximal  and dAT/dt  = 0; 
thus 

dAT nB~e ~r 
- ~ A T +  A T = 0  ( 9 )  

dt ( 1 - n)[Be ~' + ( 1 - B)] 

F r o m  Eq. (9), we can obtain the relationship 

B 
1 - B  e . . . .  (n - 1) ( 1 0 )  
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Fig. 1. Relationships of n and (T e - Tm)I(T m -- Til ) for n < 1 from eqn (16). 

There are two points  of inflection on the D T A  curve: at Ti] and T~2 at time ti~ and  
ti2. These two points  can be found by setting the second derivative of the 
temperature deviat ion equal to zero, i.e. d 2 A T / d t  2 = 0. Then  we can obta in  the next 
two equat ions 

e a t i  ' _ (n -- 1)[2 + n  -- x / ~  + 4)] (11) 
I - B  2 

and 

B (n - 1)[2 + n + x ~  + 4)] 
- -  e ~ti2 - (12) 
I - B  2 

At the final decomposi t ion time t e and  temperature  T e, the temperature  deviat ion 
AT from the baseline is set to zero. Therefore, from Eq. (8) we can obta in  the 
equat ion at the end point  as 

B 
- -  e"~ = - 1  (13) 
1 - B  

Dividing Eq. (13) by Eq. (10) yields 

1 
e~<,o - tm) = (14) 

1 - - n  
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Fig. 2. Relationships of n and (AT,,) /(AT m) for n ¢ 1 from eqn (20). 
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Then,  dividing Eq. (10) by Eq. (11) yields 

2 
e~('m ' , ~ _  (15) 

2 + n - x / n ( n  + 4) 

Taking  the natural  logar i thm on bo th  sides of  Eqs. (14) and (15) and dividing the 
first term by the second te rm and then combining  with Eqs. (3) gives 

Te - -  Tr~ In( 1 -- n) (16) 

Tm - -  Til ln[[2 + n -- x ~  + 4)/2]] 

Eq. (16) is the same as that  derived by Liu et al. [6]. F r o m  this equat ion,  we see that  
the values of  n must  be less than unity. The value of  the reaction order  is a funct ion 
of  the measurable  characterist ic tempera tures  T e, Tin, and Til. However ,  this equat ion 
is not  convenient  for est imating the value of  n which has to be solved by a trial and 
error  approach .  In order  to obta in  a convenient  equat ion for the react ion order  
calculation, the values of  n versus ( T ¢ -  T m ) / ( T , ~ -  Til) are plot ted in Fig. 1. Then,  
using curve fitting, we can express n as a function of  the characteristic tempera tures  

n = 0 . 9 9 8 1 1 -  1.25873e 0"93573(Te  Trn)/(Tm Ti l )  (17) 

Eq. (17) is only used in the range of  n < 1, or 0.1 < (Te --  T m ) / ( T m  --  Ti]) < 11.96. 
Using this equat ion,  we can est imate the reaction order  of  decomposi t ion  very 
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conveniently and quickly. After obtaining the value of n, the values of  E and A can 
be evaluated. From Eqs. (3) and (14), we obtain 

RT~ 
E - - -  In( 1 - n) (18) 

Tm-Te 
From Eqs. (3) and (10), the value of the pre-exponential factor of  the Arrhenius 
equation can be expressed as 

( E4) / R Tg )e emT,, 
A = e[E(Tm To)l/Rlg Jr- (n -- 1) (19) 

Eqs. (16)-(18)  are valid for n < 1 only. When this does not hold, these equations 
are useless. Liu et al. suggested combining Eqs. (8), (10) and (11) to give 

AT m A T i l - E 2 + n - x / ~ + 4 ) l E ( n - 1 ) [ 2 + n - x / ~ + 4 ) ] + 2 1  n / ( ' - n ) 2  2n (20) 

Eq. (20) is more complicated than Eq. (16). Using this equation to evaluate the 
values of  n is arduous. In order to solve this problem, we plot the calculated values 
of  n versus ATi l /ATm from Eq. (20) as shown in Fig. 2. Again, after using the 
method of curve fitting, the reaction order n can be expressed as a function of the 
characteristic temperatures in a very simply way 

n = 352204.38e 18"I26('STil/ATm) (21) 

Eq. (21) is valid in the range o f n  ¢ 1 or 0.58 -<(ATil/ATm) _<0.837. The values of  
ATi~ and ATm are the distances of  Ti~ and Tm from the baseline to the curve 
respectively. The value of E in this category can be calculated by rearrangement of  
Eq. (15) 

E = R T g / ( T  m - Ti, ) ln[[2 + n + x / ~  + 4)]/2] (22) 

The values of the pre-exponential factor A in this category can be calculated using 
Eq. (19). 

I f  the relationship between the characteristic temperatures, ( T  e - T m ) / ( T m -  Ti~), 
is greater than 11.96, the reaction order is equal to unity. Eq. (1) becomes 

dx 
dt = A ( 1 -  x )e  F/Rr (23) 

The first derivative of  Eq. (23) can be used to find T = T m at time t = tm 

d5 ~ /  = ~ -  A e - ~ / " ~  - -  - 
I T =  T m 

Thus, we can obtain for n = 1 

4)E ee/RTm 
A = ~ m  

d x  
- 0 ( 2 4 )  

dt 

(25) 

The second derivative of  Eq. (23) can be used to obtain two inflection temperatures 
T~ and T~ 2 at time t~ and ti2 respectively. The result is 
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Fig. 3. Relationships of E/RT n and (Til)/(T,,) for n = 1 from eqn (29). 
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d 2 ( d x )  ~{q52E 2 2q~2E '] 30E ] d x  
= R T 3 } -  ~ T s A e - F 4 R T + ( A e - E m r ) 2  ~ = 0  

The solution of Eq. (26) can be obtained as two roots 

and 

Ae-Emvi. = RT~I 

(26) 

(27) 

A e -E/RT~2 = R T ~  2 

Combining Eqs. (25) and (27) to eliminate A, we can calculate the activation energy 
from the following equation for n = 1 

I J E Tmm---T~ 21n--T~,--ln 1.5-- 1.25+ (29) 

For high activation energy materials, E >> 2RT~I, the last term inside the square 
root can be neglected. Consequently, this equation can be simplified as 
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E ~ Tm - Ti~ 1.9123 + 3.974 In Tm (30) 

for n = 1. When the activation energy is not very high, Eq. (29) should produce 
some truncation error if we neglect the last term inside the square root. In order to 
obtain an exact value of E from Eq. (29), we have to solve it by a tedious trial and 
error method. Therefore, the relationships between E/RTil and Ti~/Tm w e r e  calcu- 
lated from Eq. (29) and plotted in Fig. 3. After curve fitting, their correlation can 
be expressed as 

E/RTij = 13.54925 + 3.58857 × lO-19e 47"05882(Til/Tm) (31) 

for n = 1. Eq. (31) can also be expressed as 

E = Til [26.92236 + 7.1305 × lO-19e 47"05882(T''/Trn) (32) 

for n = 1. From Eq. (32), the first-order reaction activation energy can be calcu- 
lated very easily. This equation is only valid in the range 0.90 _< (Ti~/Tm) <_ 0.98. 

3. Verification and application of the theorem 

Yang and Steinberg [5] expressed the reaction order n as a function of T e, Tm and 
Ti~ for n < 1 and as a function of Til, Ti2 and T m for n ¢ 1. The calculation cannot 
always provide a convergent solution for n 4:1 due to the variables T~I and Ti2 
which are solved using the same equation. Liu et al. [6] modified the Yang and 
Steinberg model and obtained a fairly convenient one. However, it is difficult to 
obtain a solution of the reaction order n from their complicated equations. 
Kissinger [1] proposed a shape index semi-empirical equation to calculate reaction 
order for n < 1. This equation is convenient for the estimation of reaction order. 
However, using Kissinger's model to estimate the activation energy requires various 
heating rates. Huang and co-workers [2,3] also used Kissinger's model to estimate 
the reaction order for n < 1 and modified the Kissinger model tc calculate the 
reaction order for 1 < n < 2. There is no way to calculate reaction order for n > 2. 
Therefore, the above methods to calculate the kinetic parameters are still compli- 
cated and inconvenient. Even Huang and co-workers used the Kissinger model to 
estimate reaction order to avoid complicated iteration; the activation energy and 
pre-exponential factor calculations in their model still need to be solved by trial and 
error iterations. Comparing all of  these models, the equations presented here are 
more effective and convenient than any of the other equations in the kinetic 
parameter  calculations. 

A brief, convenient theorem has been derived above in the three categories, n < 1, 
n = 1, and n ¢ 1, for calculating the kinetic parameters of  a decomposition reaction 
from a single DTA curve. Knowing the characteristic temperatures of  a DTA curve, 
the kinetic parameters n, E, and A can be evaluated very quickly and accurately 
from the above derived equations. In order to demonstrate this derived theorem, 
DTA thermograms for the decomposition of energetic and other materials pub- 
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Table 1 
Comparison of kinetic parameters obtained by various methods (n = 1) 

249 

Yang and Steinberg [5] ~b/(°C min-i) E/(kcal mol-1) A/S--1 

Decomposition of benzenediazonium chloride, Tm= 53.93°C, Ti~ = 46.45°C 
Crossley et al. [7] 0 27.2 1.0 x 1015.2 
Borchardt and Daniel [8] 1 28.3 1.0 x l0163 
Huang et al. [2] 1 26.1 1.0 X 1014"7 

This work 1 29.8 (Exact) 1.0 x 10173 

1 27.1 (Approx.) 1.0 x 10 Z5-4 

Decomposition of CO 2 + C ~ 2CO, T m = 1293°C, T~I = 1221°C 
Value in literature [1] 10 71.16 3.32 x 10 v 
Yang and Steinberg [5] 10 72.00 (Approx.) 3.25 x 107 

10 66.00 (Exact) 4.11 x l 0  6 

This work 10 73.71 (Exact) 4.88 x 107 
10 68.23 (Approx.) 7.76 x l06 

Dehydration of Goergia kaolinite, T m = 600°C, T~ = 555°C 
Value in literature [1] 6 34.97 1.29 x 106 
Yang and Steinberg [5] 6 35.00 1.23 x 106 
This work 6 36.59 (Exact) 3.49 x 10 6 

6 34.11 (Approx.) 7.78 x 105 

Dehydration of Eureka halloysite, T m = 533°C, T~I = 496°C 
Value in literature [1] 6 35.85 1.66 x 107 
Yang and Steinberg [5] 6 36.00 2.05 x 107 
This work 6 37.94 (Exact) 5.68 x 107 

6 35.18 (Approx.) 9.41 x 106 

l ished by p r e v i o u s  a u t h o r s  h a v e  been  e m p l o y e d  to  ca lcu la te  k ine t ic  p a r a m e t e r s .  T h e  

ca lcu la t ed  resul ts  a re  c o m p a r e d  wi th  l i t e ra tu re  da ta .  

3.1. Case o f  n =  1 

T h e  k ine t ics  o f  the  f i r s t -o rder  r eac t ions  can  be so lved  ana ly t i ca l ly  p r o v i d e d  E and  

A are  f u n c t i o n s  o f  Til and  T m only.  These  final  r e l a t ionsh ips  h a v e  been  s h o w n  in 

Eqs .  (32) a n d  (25) respect ive ly .  In  Eqs .  (29), we see tha t  the  va lues  o f  E h a v e  to be 

g rea te r  t h a n  2RTi l ,  o the rwi se  there  is no  so lu t ion  in this e q u a t i o n .  I f  E >> 2RTi l ,  
then  Eq.  (29) can  be s impl i f ied  in to  Eq.  (30). In  tha t  case,  the  a c t i v a t i o n  ene rgy  is 

ve ry  high.  T h e  D T A  cu rve  m u s t  be  very  n a r r o w  and  sharp ,  o r  T~I is c lose to  Tin. 

F o u r  f i r s t -o rder  d e c o m p o s i t i o n  r eac t ions  were  selected f r o m  the  l i t e ra tu re  as 

s h o w n  in T a b l e  1. T h e  e s t i m a t e d  E and  A va lues  are  c o m p a r e d  wi th  t hose  
p r ev ious ly  de t e rmined ,  T h e  kinet ics  o f  d e c o m p o s i t i o n  o f  b e n z e n e d i a z o n i u m  ch lo r ide  

so lu t i on  were  s tud ied  i s o t h e r m a l l y  by  Cross l ey  et al. [7] and  the n o n - i s o t h e r m a l  
D T A  curve  was  m e a s u r e d  by B o r c h a r d t  and  Dan i e l s  [8]. T h e  a p p r o x i m a t e  so lu t ion  

o f  the  a c t i v a t i o n  ene rgy  E is ve ry  close to the  e x p e r i m e n t a l  d a t a  o f  C ros s l ey  et al.,  
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i.e. E = 27.2 kcal mol 1. The exact solution gives slightly higher values and the 
method of Huang et al. gives slightly lower values of E and A. 

Other first-order reactions are the decomposition of CO2 + C, the dehydration of 
Georgia kaolinite, and the dehydration of Euraka halloysite. All of  these kinetic 
parameters are obtained from Yang and Steinberg [4,5] and Kissinger [1]. The 
calculated E and A values for both the exact and approximate solutions are better 
than Yang and Steinberg's calculations and close to the experimental results. Yang 
and Steinberg used the calculated values of E and A to predict the rates of  CO2 + C 
reaction. Their predicted values are lower than the experimental data determined 
isothermally. This is because the temperatures measured (T,  and Tin) were the 
reference temperatures, and during the reaction the sample temperature was lower 
than the reference and the heating rate was also lower before the peak temperature. 
Consequently, lower T~j and T m values lead to lower estimated E and A. In this 
calculation, all the values of activation energy and pre-exponential factor are higher 
than the Yang and Steinberg predictions. The approximate solutions yield a lower 
value than the exact solutions and the Yang and Steinberg predictions neglect the 
last term inside the square root of  Eq. (29). However, the approximate calculation 
of the present method is better than any of the other evaluations. 

3.2. Case o f  n ¢ 1 

There are two categories for n ¢ 1, i.e. n < 1 and n > 1. The kinetic parameters 
n, E, and A can be calculated using Eqs. (17), (18), and (19) in the category of 
n < 1  or 0.1 < ( T  e -  T m ) / ( T m - T i l ) <  11.96, and Eqs. (21), (22) and (19) in the 
category of n ¢ 1 or 0.58 < (AT~ lATIn) < 0.837. Various kinetic parameter  calcula- 
tion methods have been reviewed and listed by Huang and co-workers [2,3]. The 
reaction order and activation energy calculated by this method is in fair agreement 
with those obtained from experiments or from other methods. Yang and Steinberg 
[5] studied the rates of  decomposition of calcitic limestone by isothermal T G  and 
non-isothermal DTA measurement. They reported that the values of  reaction order 
n are between 0.55 and 0.57, and that the activation energy E is about 44 kcal 
mol-~. The Huang calculated values of  n are in the range 0.56-0.59, and the values 
of  E are about 43.6-45 kcal mo1-1. In this calculation, we found that the values of 
n are between 0.51 and 0.60 for various heating rates. These results are very close 
to the previously calculated results of Yang and Steinberg and Huang and co-work- 
ers. However, the calculated values of  the activation energy are in the range 
27.4-35.3 kcal mol 1. This result is lower than those of previous methods. 

The kinetic parameters of  energetic materials, i.e. T N T  (trinitrotoluene), RDX 
(cyclotrimethylenetrinitrame), H M X  (cyclotetramethylene tetranitramine), Tetryl, 
and PETN (pentaerythritol tetranitrate), were calculated and compared with the 
results of  previous studies. All the experimental data are from Huang and Wu [3]. 
As shown in Table 2, all of  these reactions are in the category of n < 1. Both 
Kissinger and Huang and co-workers calculated the reaction order using the same 
semi-empirical equation. Therefore, their calculated results are the same. In this 
calculation, the values of n, E, and A of RDX are in fair agreement with the 
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Table 2 
Comparison of kinetic parameters obtained by various methods for n ¢ 1 

qS/(°C min -I)  n E/(kcal mo1-1) A 

Calcitic limestone 
Isothermal TG [2] 
Yang and Steinberg [5] 

Liu et al. [6] 
Huang et al. [2] 

This work 

RDX 
Reich [9] 
Values in literature [3] 

Kissinger's method [I] 
Liu et al. [6] 
Huang and Wu [3] 

This work 

HMX 
Values in literature [3] 

Kissinger's method [1] 
Liu et al. [6] 
Huang and Wu [3] 

This work 

Tetryl 
Values in literature [3] 

Kissinger's method [1] 

0 0.55 44.0 
6 0.55 44.0 

10 0.57 43.0 
15 0.56 44.0 

0.57 
6 0.56 45.0 

10 0.58 44.4 
15 0.59 43.6 
6 0.58 35.3 

10 0.51 27.4 
15 0.60 33.7 

6 0.80 80.0 
6 0.60 42.0 

10 1.0 43.1 47.9 
15 45.2 

47.5 
0 67.5 

34.68 
0.6 32.5 

6 0.85 44.9 
10 0.93 44.8 
15 0.96 46.8 
6 0.896 48.7 

10 0.890 33.2 
15 0.993 61.7 

6 1.0 52.7 
10 0.86 54.0 
15 177.0 

228.0 + 24 
1.0 52.7 (liq.) 
1.0 52.9 (vap.) 

82.0 
0.86 54.0 

6 0.67 51.7 
10 0.82 50.0 
15 0.95 57.8 
6 0.880 98.12 

10 0.968 98.23 
15 0.998 111.16 

6 1.0 34.9 
10 0.0 54.9 
15 1.0 38.4 

25.0 

1.6 x 106 
1.9 x 106 
1.2 x 106 
1.9 x 106 

2.8 x 106 
2.2 x 106 
1.5 x 106 
2.3 x 10 4 

5.8 x 102 
1.3 x 104 

8.3 × 10 t2 
4.1 x l 0  t] 

2.0 × 10 t7 
1.8 × 1017 
8.9 × 1017 
9.4 x 10 TM 

14. x 1012 
1.8 × 1024 

1.2 × 1019 
1.8 × 1019 

4.2 x 1017 

5.9 x 10 z° 
5.8 x 1036 
5.5 x 1036 
5.7 x 1041 
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qS/(°C min -l) n E/(kcal mol 1) m 

Liu et al. [6] 
Huang and Wu [3] 

This work 

PETN 
Values in literature [3] 

Reich [9] 
Kissinger's method [1] 
Liu et al. [6l 
Huang and Wu [3] 

Huang et al. [2] 
This work 

TNT 
Values in literature [3] 

Kissinger's method [ 1] 
Huang and Wu [3] 

This work 

0.92 80.4 
6 0.73 32.7 

l0 0.79 33.6 
15 0.81 31.2 
6 0.93 64.3 

10 0.91 46.9 
15 0.98 69.8 

6 1.0 33.0 
10 1.0 47.0 
15 1.0 47.0 
6 1.0_+0.1 59.0+3 

33.0 
0.89 31.3 

6 1.1 47.0 
10 1.24 46.6 
15 1.29 47.3 
6 0.95 38.3 
6 0.95 36.4 

10 0.97 35.1 
15 0.96 37.7 

6 1.0 24.2 
l0 14.0 
15 0 29.4 

19.3 
6 1.65 22.0 

l0 1.75 21.0 
15 2.66 
6 0.998 

10 0.997 
15 0.998 

2.5 x 1034 

7.9 x 1012 

1.7 x 1013 

1.2 x 1012 

5.1 X 1027 
2.3 × lO 19 

3.9 x 1029 

3.6 x 1012 

2.5 x 1013 

1.8 x 1012 

7.0 × 1019 

3.1 × 1019 

4.5 × 1019 

3.1 x 106 
6.3 x 1014 

1.3 x 10 TM 

1.7 × 1015 

7.1 x 10 5 
2.9 x 10 5 

251.1 4.1 X 1093 

193.7 1.8 X 1070 

126.4 3.7 X 1044 

l i t e ra tu re  d a t a  and  ca lcu la t ions .  These  ca l cu l a t i ons  o f  H M X  give a be t t e r  a g r e e m e n t  

o f  n to  the  e x p e r i m e n t a l  d a t a  t h a n  any  o t h e r  ca l cu la t ed  results .  H o w e v e r ,  the  

a c t i va t i on  energ ies  in these  ca l cu l a t i ons  are  h ighe r  t h a n  p r e v i o u s  d a t a  a n d  the  

H u a n g  m e t h o d  as the  hea t i ng  rates  are  6 and  10°C m i n  -1. W h e n  the hea t i ng  is 

inc reased  to 15°C m i n  -1 the  ca l cu la t ed  ac t i va t i on  ene rgy  b e c o m e s  l ower  t h a n  the  

e x p e r i m e n t a l  d a t a  bu t  be t t e r  t h a n  va lues  f r o m  the  H u a n g  m e t h o d .  T h e  va lues  fo r  n 

o f  Te t ry l  in the l i t e ra tu re  are  un i ty  fo r  hea t i ng  rates  o f  6 a n d  15°C m i n  1 a n d  ze ro  

for  hea t i ng  ra tes  o f  10°C min  i. T h e  ca l cu l a t ed  resul ts  o f  n ( 0 . 8 8 - 0 . 9 8 )  a re  be t t e r  

t h a n  the  H u a n g  resul t  o f  n f r o m  0.73 to  0.81. T h e  ac t i va t i on  ene rgy  ca l cu l a t ed  f r o m  

H u a n g  et al . ' s  m e t h o d  is l ower  t h a n  the  l i t e ra tu re  da ta ,  bu t  the  p re sen t  c a l c u l a t i o n  
resul ts  are  a l m o s t  twice  the  r e p o r t e d  values ,  excep t  at  a hea t i ng  ra te  o f  10°C m i n - 1 .  
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All of  the n values of  PETN shown in Refs. [3] and [9] are equal to unity. Huang 
used the modified Kissinger model to calculate the reaction order from their own 
DTA thermograms. All of  their estimated n values are higher than unity. In our 
analysis, we found that the values of  the characteristic temperatures are in the range 
of 0.1 <_ ( T e -  Tm) / (Tm - T , )  < 11.96. Thus, from Eq. (17), the calculated values of  
n are less than unity. The activation of this calculation is 36.4 kcal mol ~ which is 
close to the literature value of 33.0 kcal mo1-1 than obtained by the Kissinger or 
Huang methods at a heating rate of  6°C min-  J. However, a larger discrepancy with 
previously reported results at higher heating rates of  10 and 15°C min 1 was found. 
There are two reasons for these calculated results. One is the higher reaction order 
in previous predictions leading to the higher activation energy and pre-exponential 
factor evaluations. The other is that Eqs. (18) and (19) are functions of  T 0, Tm, Te 
and n. A slight change in To can produce a very large difference in the calculated 
results of  E and A. In the Huang method, the characteristic temperatures Tin, T , ,  
T e and heating rate ~b are needed to evaluate their kinetic parameters. In the present 
calculation, we need one more variable, i.e. T o , which is the intersection of the 
horizontal baseline and the DTA curve measured from the experimental DTA 
curves of  Huang and Wu [3]. Unfortunately, a tiny observation error could cause 
a considerable calculated difference in E and A from Eqs. (19) and (20). The same 
results are also found for the T N T  kinetic parameter  calculations. The DTA curves 
shown in Huang et al. are too sharp to estimate the value of T o very accurately. 
Therefore, the deviation of  the calculated results from the reported data would be 
significant. Again, although Huang and Wu also obtained a reaction order of  T N T  
greater than unity, we still use Eq. (17), i.e. n < 1, to evaluate the reaction order 
because the values of  ( T  e - T m ) / ( T  m - Til) are less than 11.96. All of  the calculated 
n values are close to unity. Obviously, the Huang and Wu method cannot estimate 
the kinetic parameters of  T N T  for n higher than 2. 

In the case of  n > 1, general equations of  Eqs. (21), (22), and (19) are used to 
evaluate the kinetic parameters, n, E, and A, respectively. These equations can also 
be used in the category of n < 1. The valid conditions of calculation of these 
equations are 0.58 < ATil/ATm < 0.837. The calculated values of  reaction order are 
0.1 < n < 10. So far, there is no relevant experimental data in the literature than can 
be used for the kinetic parameter  calculations in this category. Even though Huang 
and Wu obtained values of  reaction order greater than unity for PETN and TNT,  
the characteristic temperatures do not fall in the range 0.58 < (AT, /ATm) < 0.837. 
Thus we cannot calculate n and E using Eqs. (21) and (22). The calculated values 
of  n for PETN and T N T  in this work are less than unity. 

4. Conclusions 

The characteristic temperature equations can be employed to evaluate the kinetic 
parameters, n, E, and A, from a single DTA curve. For  n < 1, Eqs. (17), (18), and 
(19) can be used to calculate n, E, and A. For  n = 1, Eqs. (32) and (25) can be used 
to calculate E and A. For n :~ 1, Eqs. (21), (22) and (19) are employed to calculate 
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n, E, and  A. All  o f  these equat ions  are concise and can be used to calculate  the 
kinetic pa ramete r s  very quickly wi thout  any i terat ion.  Al l  o f  the kinetic pa ramete r s  
for  decompos i t ion  react ions  eva lua ted  by the present  me thod  are in fair  agreement  
with those in the l i terature,  except for P E T N  and TNT.  
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